Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
PLoS Negl Trop Dis ; 17(1): e0010460, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634153

RESUMO

Rift Valley fever virus (RVFV) is a zoonotic arbovirus that has profound impact on domestic ruminants and can also be transmitted to humans via infected animal secretions. Urban areas in endemic regions across Africa have susceptible animal and human hosts, dense vector distributions, and source livestock (often from high risk locations to meet the demand for animal protein). Yet, there has never been a documented urban outbreak of RVF. To understand the likely risk of RVFV introduction to urban communities from their perspective and guide future initiatives, we conducted focus group discussions with slaughterhouse workers, slaughterhouse animal product traders, and livestock owners in Kisumu City and Ukunda Town in Kenya. For added perspective and data triangulation, in-depth interviews were conducted one-on-one with meat inspector veterinarians from selected slaughterhouses. A theoretical framework relevant to introduction, transmission, and potential persistence of RVF in urban areas is presented here. Urban livestock were primarily mentioned as business opportunities, but also had personal sentiment. In addition to slaughtering risks, perceived risk factors included consumption of fresh milk. High risk groups' knowledge and experience with RVFV and other zoonotic diseases impacted their consideration of personal risk, with consensus towards lower risk in the urban setting compared to rural areas as determination of health risk was said to primarily rely on hygiene practices rather than the slaughtering process. Groups relied heavily on veterinarians to confirm animal health and meat safety, yet veterinarians reported difficulty in accessing RVFV diagnostics. We also identified vulnerable public health regulations including corruption in meat certification outside of the slaughterhouse system, and blood collected during slaughter being used for food and medicine, which could provide a means for direct RVFV community transmission. These factors, when compounded by diverse urban vector breeding habitats and dense human and animal populations, could create suitable conditions for RVFV to arrive an urban center via a viremic imported animal, transmit to locally owned animals and humans, and potentially adapt to secondary vectors and persist in the urban setting. This explorative qualitative study proposes risk pathways and provides initial insight towards determining how urban areas could adapt control measures and plan future initiatives to better understand urban RVF potential.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Quênia/epidemiologia , Gado/virologia , Carne , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/transmissão , Ruminantes/virologia , Zoonoses/prevenção & controle , Zoonoses/transmissão , Fatores de Risco , População Urbana , Matadouros/legislação & jurisprudência , Matadouros/normas , Inocuidade dos Alimentos
2.
PLoS Negl Trop Dis ; 16(2): e0010024, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108284

RESUMO

Rift Valley fever (RVF) is a mosquito-borne disease mostly affecting wild and domestic ruminants. It is widespread in Africa, with spillovers in the Arab Peninsula and the southwestern Indian Ocean. Although RVF has been circulating in West Africa for more than 30 years, its epidemiology is still not clearly understood. In 2013, an RVF outbreak hit Senegal in new areas that weren't ever affected before. To assess the extent of the spread of RVF virus, a national serological survey was implemented in young small ruminants (6-18 months old), between November 2014 and January 2015 (after the rainy season) in 139 villages. Additionally, the drivers of this spread were identified. For this purpose, we used a beta-binomial ([Formula: see text]) logistic regression model. An Integrated Nested Laplace Approximation (INLA) approach was used to fit the spatial model. Lower cumulative rainfall, and higher accessibility were both associated with a higher RVFV seroprevalence. The spatial patterns of fitted RVFV seroprevalence pointed densely populated areas of western Senegal as being at higher risk of RVFV infection in small ruminants than rural or southeastern areas. Thus, because slaughtering infected animals and processing their fresh meat is an important RVFV transmission route for humans, more human populations might have been exposed to RVFV during the 2013-2014 outbreak than in previous outbreaks in Senegal.


Assuntos
Doenças dos Animais/epidemiologia , Surtos de Doenças/veterinária , Febre do Vale de Rift/epidemiologia , Doenças dos Animais/virologia , Criação de Animais Domésticos , Animais , Humanos , Modelos Logísticos , Chuva , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/isolamento & purificação , Ruminantes/virologia , Senegal/epidemiologia , Estudos Soroepidemiológicos , Zoonoses Virais/epidemiologia
3.
PLoS Negl Trop Dis ; 15(10): e0009837, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34695125

RESUMO

Rift Valley fever virus (RVFV) causes morbidity and mortality in humans and domestic ungulates in sub-Saharan Africa, Egypt, and the Arabian Peninsula. Mosquito vectors transmit RVFV between vertebrates by bite, and also vertically to produce infectious progeny. Arrival of RVFV into the United States by infected mosquitoes or humans could result in significant impacts on food security, human health, and wildlife health. Elucidation of the vectors involved in the post-introduction RVFV ecology is paramount to rapid implementation of vector control. We performed vector competence experiments in which field-collected mosquitoes were orally exposed to an epidemic strain of RVFV via infectious blood meals. We targeted floodwater Aedes species known to feed on cattle, and/or deer species (Aedes melanimon Dyar, Aedes increpitus Dyar, Aedes vexans [Meigen]). Two permanent-water-breeding species were targeted as well: Culiseta inornata (Williston) of unknown competence considering United States populations, and Culex tarsalis Coquillett as a control species for which transmission efficiency is known. We tested the potential for midgut infection, midgut escape (dissemination), ovarian infection (vertical transmission), and transmission by bite (infectious saliva). Tissues were assayed by plaque assay and RT-qPCR, to quantify infectious virus and confirm virus identity. Tissue infection data were analyzed using a within-host model under a Bayesian framework to determine the probabilities of infection outcomes (midgut-limited infection, disseminated infection, etc.) while estimating barriers to infection between tissues. Permanent-water-breeding mosquitoes (Cx. tarsalis and Cs. inornata) exhibited more efficient horizontal transmission, as well as potential for vertical transmission, which is contrary to the current assumptions of RVFV ecology. Barrier estimates trended higher for Aedes spp., suggesting systemic factors in the differences between these species and Cx. tarsalis and Cs. inornata. These data indicate higher potential for vertical transmission than previously appreciated, and support the consensus of RVFV transmission including a broad range of potential vectors.


Assuntos
Aedes/virologia , Culex/virologia , Mosquitos Vetores/virologia , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/fisiologia , Aedes/genética , Aedes/fisiologia , Animais , Bovinos/virologia , Colorado , Culex/fisiologia , Cervos/virologia , Mosquitos Vetores/classificação , Mosquitos Vetores/fisiologia , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/isolamento & purificação , Saliva/virologia
4.
Am J Trop Med Hyg ; 106(1): 182-186, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34695799

RESUMO

Rift Valley fever phlebovirus (RVFV) is a mosquito-transmitted phlebovirus (Family: Phenuiviridae, Order: Bunyavirales) causing severe neonatal mortality and abortion primarily in domestic ruminants. The susceptibility of young domestic swine to RVFV and this species' role in geographic expansion and establishment of viral endemicity is unclear. Six commercially bred Landrace-cross piglets were inoculated subcutaneously with 105 plaque-forming units of RVFV ZH501 strain and two piglets received a sham inoculum. All animals were monitored for clinical signs, viremia, viral shedding, and antibody response for 14 days. Piglets did not develop evidence of clinical disease, become febrile, or experience decreased weight gain during the study period. A brief lymphopenia followed by progressive lymphocytosis was observed following inoculation in all piglets. Four piglets developed a brief viremia for 2 days post-inoculation and three of these had detectable virus in oronasal secretions three days post-inoculation. Primary inoculated piglets seroconverted and those that developed detectable viremias had the highest titers assessed by serum neutralization (1:64-1:256). Two viremic piglets had a lymphoplasmacytic encephalitis with glial nodules; RVFV was not detected by immunohistochemistry in these sections. While young piglets do not appear to readily develop clinical disease following RVFV infection, results suggest swine could be subclinically infected with RVFV.


Assuntos
Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/imunologia , Doenças dos Suínos/virologia , Animais , Encéfalo/patologia , Encéfalo/virologia , Suscetibilidade a Doenças , Feminino , Imuno-Histoquímica , Fígado/patologia , Fígado/virologia , Linfonodos/patologia , Linfonodos/virologia , Masculino , RNA Viral/sangue , RNA Viral/genética , RNA Viral/isolamento & purificação , Febre do Vale de Rift/sangue , Febre do Vale de Rift/transmissão , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/isolamento & purificação , Vírus da Febre do Vale do Rift/patogenicidade , Baço/patologia , Baço/virologia , Sus scrofa , Suínos , Doenças dos Suínos/sangue , Doenças dos Suínos/imunologia , Doenças dos Suínos/transmissão , Viremia/sangue , Viremia/imunologia , Viremia/virologia
5.
Nat Commun ; 12(1): 5593, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552082

RESUMO

The persistence mechanisms of Rift Valley fever (RVF), a zoonotic arboviral haemorrhagic fever, at both local and broader geographical scales have yet to be fully understood and rigorously quantified. We developed a mathematical metapopulation model describing RVF virus transmission in livestock across the four islands of the Comoros archipelago, accounting for island-specific environments and inter-island animal movements. By fitting our model in a Bayesian framework to 2004-2015 surveillance data, we estimated the importance of environmental drivers and animal movements on disease persistence, and tested the impact of different control scenarios on reducing disease burden throughout the archipelago. Here we report that (i) the archipelago network was able to sustain viral transmission in the absence of explicit disease introduction events after early 2007, (ii) repeated outbreaks during 2004-2020 may have gone under-detected by local surveillance, and (iii) co-ordinated within-island control measures are more effective than between-island animal movement restrictions.


Assuntos
Modelos Teóricos , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/fisiologia , Animais , Comores/epidemiologia , Gado/virologia , Febre do Vale de Rift/epidemiologia , Estudos Soroepidemiológicos , Zoonoses/epidemiologia , Zoonoses/prevenção & controle , Zoonoses/transmissão
6.
Viruses ; 13(6)2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198809

RESUMO

Rift Valley fever virus (RVFV) causes a zoonotic mosquito-borne haemorrhagic disease that emerges to produce rapid large-scale outbreaks in livestock within sub-Saharan Africa. A range of mosquito species in Africa have been shown to transmit RVFV, and recent studies have assessed whether temperate mosquito species are also capable of transmission. In order to support vector competence studies, the ability to visualize virus localization in mosquito cells and tissue would enhance the understanding of the infection process within the mosquito body. Here, the application of in situ hybridization utilizing RNAscope® to detect RVFV infection within the mosquito species, Culex pipiens, derived from the United Kingdom was demonstrated. Extensive RVFV replication was detected in many tissues of the mosquito with the notable exception of the interior of ovarian follicles.


Assuntos
Culicidae/virologia , Hibridização In Situ , Mosquitos Vetores/virologia , Vírus da Febre do Vale do Rift/genética , Animais , Imuno-Histoquímica , Hibridização In Situ/métodos , Febre do Vale de Rift/transmissão , Febre do Vale de Rift/virologia
7.
Sci Rep ; 11(1): 9822, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972596

RESUMO

Rift Valley fever phlebovirus (RVFV, Phenuiviridae) is an emerging arbovirus that can cause potentially fatal disease in many host species including ruminants and humans. Thus, tools to detect this pathogen within tissue samples from routine diagnostic investigations or for research purposes are of major interest. This study compares the immunohistological usefulness of several mono- and polyclonal antibodies against RVFV epitopes in tissue samples derived from natural hosts of epidemiologic importance (sheep), potentially virus transmitting insect species (Culex quinquefasciatus, Aedes aegypti) as well as scientific infection models (mouse, Drosophila melanogaster, C6/36 cell pellet). While the nucleoprotein was the epitope most prominently detected in mammal and mosquito tissue samples, fruit fly tissues showed expression of glycoproteins only. Antibodies against non-structural proteins exhibited single cell reactions in salivary glands of mosquitoes and the C6/36 cell pellet. However, as single antibodies exhibited a cross reactivity of varying degree in non-infected specimens, a careful interpretation of positive reactions and consideration of adequate controls remains of critical importance. The results suggest that primary antibodies directed against viral nucleoproteins and glycoproteins can facilitate RVFV detection in mammals and insects, respectively, and therefore will allow RVFV detection for diagnostic and research purposes.


Assuntos
Anticorpos Antivirais/isolamento & purificação , Imuno-Histoquímica/métodos , Febre do Vale de Rift/diagnóstico , Vírus da Febre do Vale do Rift/isolamento & purificação , Aedes/virologia , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , Reações Cruzadas , Culex/virologia , Modelos Animais de Doenças , Drosophila melanogaster/virologia , Epitopos/imunologia , Estudos de Viabilidade , Feminino , Humanos , Camundongos , Mosquitos Vetores/virologia , Proteínas do Nucleocapsídeo , Febre do Vale de Rift/transmissão , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/imunologia , Células Vero , Proteínas do Envelope Viral/imunologia
8.
PLoS Negl Trop Dis ; 15(3): e0009275, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33770095

RESUMO

Camels are increasingly becoming the livestock of choice for pastoralists reeling from effects of climate change in semi-arid and arid parts of Kenya. As the population of camels rises, better understanding of their role in the epidemiology of zoonotic diseases in Kenya is a public health priority. Rift Valley fever (RVF), brucellosis and Q fever are three of the top priority diseases in the country but the involvement of camels in the transmission dynamics of these diseases is poorly understood. We analyzed 120 camel serum samples from northern Kenya to establish seropositivity rates of the three pathogens and to characterize the infecting Brucella species using molecular assays. We found seropositivity of 24.2% (95% confidence interval [CI]: 16.5-31.8%) for Brucella, 20.8% (95% CI: 13.6-28.1%) and 14.2% (95% CI: 7.9-20.4%) for Coxiella burnetii and Rift valley fever virus respectively. We found 27.5% (95% CI: 19.5-35.5%) of the animals were seropositive for at least one pathogen and 13.3% (95% CI: 7.2-19.4%) were seropositive for at least two pathogens. B. melitensis was the only Brucella spp. detected. The high sero-positivity rates are indicative of the endemicity of these pathogens among camel populations and the possible role the species has in the epidemiology of zoonotic diseases. Considering the strong association between human infection and contact with livestock for most zoonotic infections in Kenya, there is immediate need to conduct further research to determine the role of camels in transmission of these zoonoses to other livestock species and humans. This information will be useful for designing more effective surveillance systems and intervention measures.


Assuntos
Anticorpos Antibacterianos/sangue , Anticorpos Antivirais/sangue , Brucelose/epidemiologia , Camelus/microbiologia , Febre Q/epidemiologia , Febre do Vale de Rift/epidemiologia , Animais , Brucella/imunologia , Brucelose/transmissão , Coxiella burnetii/imunologia , Feminino , Humanos , Quênia/epidemiologia , Gado/microbiologia , Masculino , Febre Q/transmissão , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/imunologia , Estudos Soroepidemiológicos
9.
PLoS Negl Trop Dis ; 15(3): e0009273, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33750981

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-transmitted virus with proven ability to emerge into naïve geographic areas. Limited field evidence suggests that RVFV is transmitted vertically from parent mosquito to offspring, but until now this mechanism has not been confirmed in the laboratory. Furthermore, this transmission mechanism has allowed for the prediction of RVFV epizootics based on rainfall patterns collected from satellite information. However, in spite of the relevance to the initiation of epizootic events, laboratory confirmation of vertical transmission has remained an elusive research aim for thirty-five years. Herein we present preliminary evidence of the vertical transmission of RVFV by Culex tarsalis mosquitoes after oral exposure to RVFV. Progeny from three successive gonotrophic cycles were reared to adults, with infectious RVFV confirmed in each developmental stage. Virus was detected in ovarian tissues of parental mosquitoes 7 days after imbibing an infectious bloodmeal. Infection was confirmed in progeny as early as the first gonotrophic cycle, with infection rates ranging from 2.0-10.0%. Virus titers among progeny were low, which may indicate a host mechanism suppressing replication.


Assuntos
Culex/virologia , Transmissão Vertical de Doenças Infecciosas , Mosquitos Vetores/virologia , Febre do Vale de Rift/transmissão , Animais , Feminino , Humanos , Masculino , Mosquitos Vetores/classificação , Ovário/virologia , Vírus da Febre do Vale do Rift/isolamento & purificação , Carga Viral
10.
Sci Rep ; 11(1): 1477, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446733

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that is pathogenic to ruminants and humans. The virus is endemic to Africa and the Arabian Peninsula where outbreaks are characterized by abortion storms and mortality of newborns, particularly in sheep herds. Vector competence experiments in laboratory settings have suggested that over 50 mosquito species are capable of transmitting RVFV. Transmission of mosquito-borne viruses in the field is however influenced by numerous factors, including population densities, blood feeding behavior, extrinsic incubation period, longevity of vectors, and viremia levels in vertebrate hosts. Animal models to study these important aspects of RVFV transmission are currently lacking. In the present work, RVFV was transmitted to European (Texel-swifter cross-breed) lambs by laboratory-reared Aedes aegypti mosquitoes that were infected either by membrane feeding on a virus-spiked blood meal or by feeding on lambs that developed viremia after intravenous inoculation of RVFV. Feeding of mosquitoes on viremic lambs resulted in strikingly higher infection rates as compared to membrane feeding. Subsequent transmission of RVFV from lamb to lamb by infected mosquitoes was highly efficient in both models. The animal models described here can be used to study mosquito-mediated transmission of RVFV among the major natural target species and to evaluate the efficacy of vaccines against mosquito-mediated RVFV infection.


Assuntos
Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/metabolismo , Aedes/virologia , Animais , Surtos de Doenças , Vetores de Doenças , Modelos Animais , Mosquitos Vetores/virologia , Vírus da Febre do Vale do Rift/patogenicidade , Carneiro Doméstico/virologia
11.
Epidemics ; 33: 100409, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33137548

RESUMO

Estimating the epidemic potential of vector-borne diseases, along with the relative contribution of underlying mechanisms, is crucial for animal and human health worldwide. In West African Sahel, several outbreaks of Rift Valley fever (RVF) have occurred over the last decades, but uncertainty remains about the conditions necessary to trigger these outbreaks. We use the basic reproduction number (R0) as a measure of RVF epidemic potential in northern Senegal, and map its value in two distinct ecosystems, namely the Ferlo and the Senegal River delta and valley. We consider three consecutive rainy seasons (July-November 2014, 2015 and 2016) and account for several vector and animal species. We parametrize our model with estimates of Aedes vexans arabiensis, Culex poicilipes, Culex tritaeniorhynchus, cattle, sheep and goat abundances. The impact of RVF virus introduction is assessed every week over northern Senegal. We highlight September as the period of highest epidemic potential in northern Senegal, resulting from distinct dynamics in the two study areas. Spatially, in the seasonal environment of the Ferlo, we observe that high-risk locations vary between years. We show that decreased vector densities do not greatly reduce R0 and that cattle immunity has a greater impact on reducing transmission than small ruminant immunity. The host preferences of vectors and the temperature-dependent time interval between their blood meals are crucial parameters needing further biological investigations.


Assuntos
Febre do Vale de Rift/epidemiologia , Aedes/virologia , Animais , Bovinos , Culex/virologia , Surtos de Doenças , Vetores de Doenças , Ecossistema , Epidemias , Humanos , Mosquitos Vetores , Febre do Vale de Rift/transmissão , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift , Estações do Ano , Senegal/epidemiologia , Ovinos , Temperatura
12.
Ecohealth ; 17(3): 393-397, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33106981

RESUMO

Rift Valley fever is an arboviral zoonoses causing severe morbidity and mortality among humans and animals in many African countries. A cross-sectional study in populations of sheep reared around the Gidan-Waya Forest Reserve located in Jema'a LGA of Kaduna State, Nigeria to determine the serological evidence of exposure to Rift Valley fever virus (RVFV) using a commercial competitive enzyme-linked immunosorbent assay. Of the 200 sheep sampled, 9 (4.5%; 95 CI 2.23-8.33) were positive for antibodies to the RVFV. The detection of antibodies suggests a covert circulation among the sheep and may be indicative of a subclinical infection.


Assuntos
Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/isolamento & purificação , Doenças dos Ovinos/transmissão , Ovinos/microbiologia , Animais , Anticorpos Antivirais/isolamento & purificação , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Fezes/microbiologia , Feminino , Masculino , Nigéria , Febre do Vale de Rift/diagnóstico
13.
Proc Natl Acad Sci U S A ; 117(39): 24567-24574, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32929025

RESUMO

Rift Valley fever (RVF) is an emerging, zoonotic, arboviral hemorrhagic fever threatening livestock and humans mainly in Africa. RVF is of global concern, having expanded its geographical range over the last decades. The impact of control measures on epidemic dynamics using empirical data has not been assessed. Here, we fitted a mathematical model to seroprevalence livestock and human RVF case data from the 2018-2019 epidemic in Mayotte to estimate viral transmission among livestock, and spillover from livestock to humans through both direct contact and vector-mediated routes. Model simulations were used to assess the impact of vaccination on reducing the epidemic size. The rate of spillover by direct contact was about twice as high as vector transmission. Assuming 30% of the population were farmers, each transmission route contributed to 45% and 55% of the number of human infections, respectively. Reactive vaccination immunizing 20% of the livestock population reduced the number of human cases by 30%. Vaccinating 1 mo later required using 50% more vaccine doses for a similar reduction. Vaccinating only farmers required 10 times as more vaccine doses for a similar reduction in human cases. Finally, with 52.0% (95% credible interval [CrI] [42.9-59.4]) of livestock immune at the end of the epidemic wave, viral reemergence in the next rainy season (2019-2020) is unlikely. Coordinated human and animal health surveillance, and timely livestock vaccination appear to be key to controlling RVF in this setting. We furthermore demonstrate the value of a One Health quantitative approach to surveillance and control of zoonotic infectious diseases.


Assuntos
Febre do Vale de Rift/epidemiologia , Zoonoses/epidemiologia , Animais , Comores/epidemiologia , Epidemias , Humanos , Gado/virologia , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/transmissão , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/isolamento & purificação , Vírus da Febre do Vale do Rift/fisiologia , Estações do Ano , Estudos Soroepidemiológicos , Vacinação , Vacinas Virais/administração & dosagem , Zoonoses/transmissão , Zoonoses/virologia
14.
Parasit Vectors ; 13(1): 395, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758286

RESUMO

BACKGROUND: Arthropod borne virus infections are the cause of severe emerging diseases. Among the diseases due to arboviruses, dengue (DEN) and Rift Valley fever (RVF) are in the top ten in the list of diseases responsible of severe human cases worldwide. Understanding the effects of viral infection on gene expression in competent vectors is a challenge for the development of early diagnostic tools and may enable researchers and policy makers to better anticipate outbreaks in the next future. METHODS: In this study, alterations in gene expression across the entire Aedes aegypti genome during infection with DENV and RVFV were investigated in vitro at two time points of infection, the early phase (24 h) and the late phase (6 days) of infection using the RNA sequencing approach RESULTS: A total of 10 upregulated genes that share a similar expression profile during infection with both viruses at early and late phases of infection were identified. Family B and D clip-domain serine proteases (CLIP) were clearly overrepresented as well as C-type lectins and transferrin. CONCLUSIONS: Our data highlight the presence of 10 viral genes upregulated in Ae. aegypti during infection. They may also be targeted in the case of the development of broad-spectrum anti-viral diagnostic tools focusing the mosquito vectors rather than the mammalian hosts as they may predict the emergence of outbreaks.


Assuntos
Aedes , Vírus da Dengue , Vírus da Febre do Vale do Rift , Transcriptoma , Aedes/genética , Aedes/virologia , Animais , Infecções por Arbovirus/transmissão , Arbovírus , Dengue/transmissão , Perfilação da Expressão Gênica , Genes de Insetos , Interações entre Hospedeiro e Microrganismos , Humanos , Lectinas Tipo C/genética , Mosquitos Vetores/genética , Mosquitos Vetores/virologia , Febre do Vale de Rift/transmissão , Serina Proteases/genética , Transferrina/genética
15.
BMC Vet Res ; 16(1): 243, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32664958

RESUMO

BACKGROUND: Rift Valley fever (RVF) is a vector-borne emerging zoonotic disease of animals and humans, characterized by socioeconomic losses to livestock farmers and global public health threat. The study determined RVFV seroprevalence in cattle, assessed pastoralists' knowledge about RVF, and factors that influence its occurrence in pastoral cattle herds of Nigeria. A cross-sectional study was conducted in pastoral herds of North-central Nigeria from 2017 to 2018. Data were collected using serology and questionnaire tools. Descriptive statistics were used to analyze the obtained data. Categorical variables were presented as proportions and their associations determined by Chi-square tests. Associations of risk factors were analyzed by univariable and multivariable logistic regressions analyses at 95% confidence level. RESULTS: The overall IgM seropositivity of RVFV in pastoral cattle herds was 5.6%. This was higher in nomadic herds (7.4%) than in agro-pastoral herds (3.8%). All animal demographic characteristics of age, sex and breeds were not significantly (p > 0.05) associated with RVFV occurrence in pastoral herds. All the 403 pastoralists selected participated in the study, with the majorities of them being male, married and have no formal education. Majority of the pastoralists had low knowledge levels about zoonotic RVFV infection. All identified socio-ecological factors significantly (p < 0.05) influenced RVFV occurrence in herds. Mosquitoes availability in cattle environment (OR = 7.81; 95% CI: 4.85, 12.37), presence of rivers and streams at grazing fields (OR = 10.80; 95% CI: 6.77, 17.34), high rainfall (OR = 4.30; 95% CI: 2.74, 6.59), irrigated rice fields (OR = 5.14; 95% CI: 3.21, 7.79), bushy vegetation (OR = 6.11; 95% CI: 3.96, 9.43), animal movement (OR = 2.2; 95% CI: 1.45, 3.25), and seasons (OR = 2.34; 95% CI: 1.55, 3.51) were more likely to influenced RVFV occurrence in cattle herds. CONCLUSIONS: Results of this study had illustrated recent circulation of RVFV in pastoral cattle herds in Nigeria and needs urgent interventions. The surveyed pastoralists had low knowledge level about RVF while the socio-ecological factors significantly influenced RVFV occurrence in herds. To address these gaps, pastoralists should be educated on clinical manifestations and modes of transmission of the disease in animals and humans, and mitigation measures. Adequate knowledge about RVF epidemiology will assure food security and public health.


Assuntos
Criação de Animais Domésticos/métodos , Doenças dos Bovinos/epidemiologia , Febre do Vale de Rift/epidemiologia , Adulto , Idoso , Animais , Bovinos , Doenças dos Bovinos/transmissão , Estudos Transversais , Culicidae , Feminino , Humanos , Imunoglobulina M/sangue , Masculino , Pessoa de Meia-Idade , Nigéria/epidemiologia , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/imunologia , Fatores de Risco , Estudos Soroepidemiológicos , Fatores Socioeconômicos , Zoonoses
16.
PLoS Negl Trop Dis ; 14(6): e0008009, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32479505

RESUMO

Rift Valley fever (RVF) is endemic in northern Senegal, a Sahelian area characterized by a temporary pond network that drive both RVF mosquito population dynamics and nomadic herd movements. To investigate the mechanisms that explain RVF recurrent circulation, we modelled a realistic epidemiological system at the pond level integrating vector population dynamics, resident and nomadic ruminant herd population dynamics, and nomadic herd movements recorded in Younoufere area. To calibrate the model, serological surveys were performed in 2015-2016 on both resident and nomadic domestic herds in the same area. Mosquito population dynamics were obtained from a published model trained in the same region. Model comparison techniques were used to compare five different scenarios of virus introduction by nomadic herds associated or not with vertical transmission in Aedes vexans. Our serological results confirmed a long lasting RVF endemicity in resident herds (IgG seroprevalence rate of 15.3%, n = 222), and provided the first estimation of RVF IgG seroprevalence in nomadic herds in West Africa (12.4%, n = 660). Multivariate analysis of serological data suggested an amplification of the transmission cycle during the rainy season with a peak of circulation at the end of that season. The best scenario of virus introduction combined yearly introductions of RVFV from 2008 to 2015 (the study period) by nomadic herds, with a proportion of viraemic individuals predicted to be larger in animals arriving during the 2nd half of the rainy season (3.4%). This result is coherent with the IgM prevalence rate (4%) found in nomadic herds sampled during the 2nd half of the rainy season. Although the existence of a vertical transmission mechanism in Aedes cannot be ruled out, our model demonstrates that nomadic movements are sufficient to account for this endemic circulation in northern Senegal.


Assuntos
Aedes/crescimento & desenvolvimento , Surtos de Doenças , Modelos Estatísticos , Febre do Vale de Rift/epidemiologia , Doenças Transmitidas por Vetores/epidemiologia , Doenças Transmitidas por Vetores/veterinária , Animais , Transmissão de Doença Infecciosa , Feminino , Humanos , Masculino , Recidiva , Febre do Vale de Rift/transmissão , Senegal/epidemiologia , Estudos Soroepidemiológicos , Doenças Transmitidas por Vetores/transmissão
17.
Sci Rep ; 10(1): 8339, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433590

RESUMO

In the dominant livestock systems of Sahelian countries herds have to move across territories. Their mobility is often a source of conflict with farmers in the areas crossed, and helps spread diseases such as Rift Valley Fever. Knowledge of the routes followed by herds is therefore core to guiding the implementation of preventive and control measures for transboundary animal diseases, land use planning and conflict management. However, the lack of quantitative data on livestock movements, together with the high temporal and spatial variability of herd movements, has so far hampered the production of fine resolution maps of animal movements. This paper proposes a general framework for mapping potential paths for livestock movements and identifying areas of high animal passage potential for those movements. The method consists in combining the information contained in livestock mobility networks with landscape connectivity, based on different mobility conductance layers. We illustrate our approach with a livestock mobility network in Senegal and Mauritania in the 2014 dry and wet seasons.


Assuntos
Distribuição Animal , Gado , Análise Espacial , Animais , Mauritânia/epidemiologia , Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/transmissão , Fatores de Risco , Estações do Ano , Senegal/epidemiologia
18.
PLoS One ; 15(5): e0232481, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32421747

RESUMO

Outbreaks of Rift Valley fever have devastating impacts on ruminants, humans, as well as on regional and national economies. Although numerous studies on the impact and outbreak of Rift Valley fever exist, relatively little is known about the role of environmental factors, especially soil, on the aestivation of the virus. This study thus selected 22 sites for study in central South Africa, known to be the recurrent epicenter of widespread Rift Valley fever outbreaks in Southern Africa. Soils were described, sampled and analyzed in detail at each site. Of all the soil variables analyzed for, only eight (cation exchange capacity, exchangeable Ca2+, exchangeable K+, exchangeable Mg2+, soluble Ca2+, medium sand, As, and Br) were statistically identified to be potential indicators of sites with reported Rift Valley fever mortalities, as reported for the 2009-2010 Rift Valley fever outbreak. Four soil characteristics (exchangeable K+, exchangeable Mg2+, medium sand, and Br) were subsequently included in a discriminant function that could potentially be used to predict sites that had reported Rift Valley fever-associated mortalities in livestock. This study therefore constitutes an initial attempt to predict sites prone to Rift Valley fever livestock mortality from soil properties and thus serves as a basis for broader research on the interaction between soil, mosquitoes and Rift Valley fever virus. Future research should include other environmental components such as vegetation, climate, and water properties as well as correlating soil properties with floodwater Aedes spp. abundance and Rift Valley fever virus prevalence.


Assuntos
Surtos de Doenças/veterinária , Febre do Vale de Rift/mortalidade , Aedes/virologia , Animais , Humanos , Gado , Metais/análise , Mosquitos Vetores/virologia , Febre do Vale de Rift/transmissão , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/patogenicidade , Fatores de Risco , Solo/química , África do Sul/epidemiologia , Áreas Alagadas , Zoonoses/mortalidade
19.
Am J Trop Med Hyg ; 103(1): 183-189, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32314686

RESUMO

In 2018, a large outbreak of Rift Valley fever (RVF)-like illness in cattle in Rwanda and surrounding countries was reported. From this outbreak, sera samples from 157 cows and 28 goats suspected to be cases of RVF were tested to confirm or determine the etiology of the disease. Specifically, the hypothesis that orthobunyaviruses-Bunyamwera virus (BUNV), Batai virus (BATV), and Ngari virus (NRIV)-were co-circulating and contributed to RVF-like disease was tested. Using reverse transcriptase-polymerase chain reaction (RT-PCR), RVFV RNA was detected in approximately 30% of acutely ill animals, but in all cases of hemorrhagic disease. Seven cows with experienced abortion had positive amplification and visualization by gel electrophoresis of all three segments of either BUNV or BATV, and three of these were suggested to be coinfected with BUNV and BATV. On sequencing, five of these seven cows were conclusively positive for BUNV. However, in several other animals, sequencing was successful for some but not all segments of targeted viruses BUNV and BATV. In addition, there was evidence of RVFV-orthobunyavirus coinfection, through RT-PCR/gel electrophoresis and subsequent Sanger sequencing. In no cases were we able to definitely identify the specific coinfecting viral species. This is the first time evidence for orthobunyavirus circulation has been molecularly confirmed in Rwanda. Furthermore, RT-PCR results suggest that BUNV and BATV may coinfect cattle and that RVFV-infected animals may be coinfected with other orthobunyaviruses. Finally, we confirm that BUNV and, perhaps, other orthobunyaviruses were co-circulating with RVFV and contributed to the burden of disease attributed to RVFV in Rwanda.


Assuntos
Vírus Bunyamwera/genética , Infecções por Bunyaviridae/veterinária , Doenças dos Bovinos/epidemiologia , Surtos de Doenças , Orthobunyavirus/genética , Febre do Vale de Rift/epidemiologia , Vírus da Febre do Vale do Rift/genética , Animais , Vírus Bunyamwera/classificação , Vírus Bunyamwera/isolamento & purificação , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/transmissão , Infecções por Bunyaviridae/virologia , Bovinos , Doenças dos Bovinos/transmissão , Doenças dos Bovinos/virologia , Coinfecção , Feminino , Cabras/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Epidemiologia Molecular , Orthobunyavirus/classificação , Orthobunyavirus/isolamento & purificação , RNA Viral/genética , Febre do Vale de Rift/transmissão , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/classificação , Vírus da Febre do Vale do Rift/isolamento & purificação , Ruanda/epidemiologia
20.
PLoS Negl Trop Dis ; 14(2): e0007979, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32084127

RESUMO

INTRODUCTION: Multiple outbreaks of Rift Valley Fever (RVF) with devastating effects have occurred in East Africa. These outbreaks cause disease in both livestock and humans and affect poor households most severely. Communities living in areas practicing nomadic livestock movement may be at higher risk of infection. This study sought to i) determine the human exposure to Rift Valley fever virus (RVFV) in populations living within nomadic animal movement routes in Kenya; and ii) identify risk factors for RVFV infection in these communities. METHODS: A cross-sectional descriptive study design was used. Samples were collected from the year 2014 to 2015 in a community-based sampling exercise involving healthy individuals aged ≥18 years from Isiolo, Tana River, and Garissa counties. In total, 1210 samples were screened by ELISA for the presence of immunoglobulin IgM and IgG antibodies against RVFV. Positive results were confirmed by plaque reduction neutralization test. RESULTS: Overall, IgM and IgG prevalence for all sites combined was 1.4% (95% CI 0.8-2.3%) and 36.4% (95% CI 33.8-39.2%), respectively. Isiolo County recorded a non-significant higher IgG prevalence of 38.8% than Garissa 35.9% and Tana River 32.2% (Chi square = 2.5, df = 2, p = 0.287). Males were significantly at higher risk of infection by RVFV than females (OR = 1.67, 95% CI 1.17-2.39, p<0.005). Age was significantly associated with RVFV infection (Wald Chi = 94.2, df = 5, p<0.0001). Individuals who had regular contact with cattle (OR = 1.38, 95%CI 1.01-1.89) and donkeys (OR = 1.38, 95%CI 1.14-1.67), or contact with animals through birthing (OR = 1.69, 95%CI 1.14-2.51) were significantly at a greater risk of RVFV infection than those who did not. CONCLUSION: This study demonstrated that although the Isiolo County has been classified as being at medium risk for RVF, virus infection appeared to be as prevalent in humans as in Tana River and Garissa, which have been classified as being at high risk. Populations in these counties live within nomadic livestock movement routes and therefore at risk of being exposed to the RVFV. Interventions to control RVFV infections therefore, should target communities living along livestock movement pathways.


Assuntos
Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/fisiologia , Zoonoses/transmissão , Adolescente , Adulto , Idoso , Animais , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/virologia , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina M/sangue , Quênia , Masculino , Pessoa de Meia-Idade , Febre do Vale de Rift/sangue , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/isolamento & purificação , Adulto Jovem , Zoonoses/sangue , Zoonoses/epidemiologia , Zoonoses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...